National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Electronic structure calculations of biologically relevant transition metal complexes
Matoušek, Mikuláš ; Veis, Libor (advisor) ; Mančal, Tomáš (referee)
Porphyrins are an important class of biomolecules, which are heavily studied, both ex- perimentally and computationally. But, despite the intensive efforts, for many questions we still aren't able to consistently find an agreement between theory and experiment. One of the still unresolved issues is the character of the ground state of the Fe(II)-porphyrin molecule. We used a model of the Fe(II)-porphyrin molecule to study the effects of geometrical changes on the spin states. By carrying out extensive DMRG-CASSCF cal- culations topped with TCCSD correlation treatment we are able to link the effects of these geometrical changes to the experimental results, and predict a quintet ground state for the isolated Fe(II)-porphyrin molecule. Also, using a ligated porphyrin belonging to the iron porphyrin carbene class of molecules, we demonstrate by combining the CASSCF and AC0 methods that geometrical changes outside the porphyrin core cannot be over- looked. 1
Multireference coupled cluster methods with local pair natural orbital approach
Lang, Jakub ; Pittner, Jiří (advisor) ; Neogrady, Pavel (referee) ; Musial, Monika (referee)
Multireference coupled cluster (MRCC) methods are a highly accurate approach for sys- tems with quasi-degeneracies, where the static correlation plays an important role. How- ever, while canonical MRCC is successful for many systems, it can be used only for small sized systems. Nonetheless, it was shown that large systems can be described by the domain-based local pair natural orbital approach (DLPNO). In our group, we developed DLPNO-MkCCSD, DLPNO-TCCSD and DLPNO-MkCCSD(T) methods, which were able to recover more than 99.7% of the canonical correlation energy, while the computation of systems with more than 2000 basis functions took only a few hours on a single CPU core. Moreover, we also implemented a tailored variant of MRCC which successfully described excited states of cyclobutadiene, while the traditional MRCC under-performed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.